Highly Efficient Nanostructured "Smart Coatings" by Self-Assembly Fabrication

February 24, 2017

Antonio Checco, Soft and Biomolecular Materials, Brookhaven National Laboratory

A current challenge in materials science is the fabrication of highly efficient "smart interfaces" with extreme and reconfigurable wetting, adhesion, and friction properties, or exquisite selectivity to target biomolecules. Here we demonstrate novel, large area superhydrophobic/anti-fogging silicon surfaces with ~20 nm feature size defined by block-copolymer self-assembly and plasma etching. We investigate by means of optical and scanning probe microscopies, and x-ray scattering how the nanoscale texture morphology influences macroscopic water wettability, resistance to water infiltration under (static and dynamic) pressure, dew formation, and hydrodynamic slippage. Our findings show that fine-tuning the texture size and morphology is crucial to optimal superhydrophobic, anti-fogging, and water slippage properties. Further, we illustrate strategies for further functionalization of the nanostructured silicon templates using graphene or membrane proteins for enabling the selective, tunable, and efficient translocation of water, or target ions and biomolecules.